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High-quality three-dimensional holographic display with use
of multiple fractional Fourier transform
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In order to realize holographic display of three-dimensional (3D) objects and suppress zero-order light,
conjugate image, and speckle noise, a novel method is proposed based on multiple fractional Fourier
transform (M-FrFT) for calculating holograms of 3D objects. A series of kinoforms are generated by
adding pseudorandom phase factor (PPF) to object planes in calculating each kinoform, and generating the
PPF randomly again in the next kinoform calculation. The reconstructed images from kinoform sequence
are superposed together in order to suppress the speckle noise of reconstructed image and improve the
contrast and detail resolution of the reconstructed images. The qualities of reconstructed images from single
amplitude hologram, single kinoform, and kinoform sequence calculated by M-FrFT are compared. The
effects of suppressing speckle noise are analyzed by calculating the speckle index of numerical reconstructed
images. The analytical results illustrate that, with the proposed method for 3D holographic display, the
zero-order light, conjugate image, and speckle noise can be suppressed, and the qualities of reconstructed
images can be improved significantly.
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Computer holography can be used to generate holograms
of virtual objects without need of complicated optical
recording setups. In addition, computer-generated holo-
gram (CGH) has some other merits, such as good re-
peatability and flexibility. In recent years, some com-
putational approaches have been proposed to gener-
ate holograms of three-dimensional (3D) objects, and
they are mainly based on ray-tracing[1], look-up ta-
ble (LUT)[2,3], angular spectrum propagation[4], multi-
view images synthesizing[5], and tomographic Fresnel
transform[6]. The complexity and time-consumption of
the approach based on ray-tracing depend on the number
of sampling points. The feature of the approach based on
angular spectrum propagation is that the target objects
should be composed of tilted planes. For multi-view im-
ages synthesizing method, the pixel number of hologram
is determined by the number of multi-view images, and
the resolution of the reconstructed image is determined
by the interval of the adjacent viewing angles. Tomo-
graphic Fresnel transform is a promising method to gen-
erate hologram of 3D objects, and this method can also
be accelerated by use of discrete fast Fourier transform
(DFFT).

Recently, an improved method based on tomographic
Fresnel transform is proposed to generate multiple ki-
noforms of 3D objects[7], which can suppress the speckle
noise, zero-order light, and conjugate image in the numer-
ical and opto-electronic reconstruction processes. But
this method is only feasible to calculate holograms in the
Fresnel and Fraunhofer diffraction zone. However, the
fractional Fourier transform (FrFT) can be used for uni-
formly describing the whole diffraction phenomena from
object plane to far-field diffraction zones. The concept
of FrFT was firstly proposed and defined by Namias in
1980[8]. In 1993, Lohmann proposed two kinds of optical
FrFT systems[9]. FrFT has been widely used in the fields

of optics and information processing, such as wavefront
transform analysis[10,11], pattern recognition[12], image
encryption, and holographic reconstruction[13−15]. Some
fast algorithms for numerical calculation of FrFT have
also been proposed recently[16,17]. In this letter, a novel
method based on multiple fractional Fourier transform
(M-FrFT) is proposed to generate kinoforms of 3D ob-
jects in order to suppress the zero-order light, conjugate
image, and speckle noise in the reconstruction process.

Figure 1 illustrates the FrFT optical system based on
single lens, and its one-dimensional simplified mathemat-
ical model is described as[9]

Fr(u) = Fα[g(x)]

= Cα

+∞∫

−∞
exp[jπ(x2cot ϕ-2ux csc ϕ + u2cotϕ]

× g(x)du, (1)

where g(x) denotes the information in object plane, Fα

denotes the αth FrFT of g(x), ϕ = απ/2(0<|a|<2), and
Cα = {exp[−jπ · sgn(sinϕ)/4 + jϕ/2]}/

√
| sin ϕ |.

Specially, when α = 1, the integrated form of FrFT is
the same as the normal Fourier transform. That is, the
value of α changing from 0 to 1 means that the wave-
fronts propagate from object plane to infinite far-field
diffraction zone. So the FrFT can be used for uniformly
describing the whole diffraction phenomena from near-
field to far-field diffraction zones[9].

The relationship between the fraction order and the
recording distance of FrFT optical system shown in Fig.
1 is described as[9]

f = f1/sinϕ, z = f1tan(ϕ/2), (2)

where f denotes the physical focal length of the lens used
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Fig. 1. Schematic of FrFT optical system based on a single
lens.

in the system, and f1 denotes the standard focal length
of the system.

According to the characteristics of additivity and peri-
odicity of FrFT, we have

Fα′+α[g(x)] = Fα′{Fα[g(x)]}. (3)

If α′+α = 4k (k is an integer), then

Fα′+α[g(x)] = g(x). (4)

In the process of reconstruction, another FrFT with the
fractional order α′(α′ = 4k − α) is needed to obtain the
reconstructed image of objects. Note that if k = 0, then
α′ = −α.

According to the characteristics of FrFT, for different
fractional orders, the diffraction distances are also
different. Thus, we can calculate holograms of 3D ob-
jects with the use of FrFT. Here we suppose that the 3D
objects are composed of a certain number of discretized
planes. Suppose that L is the total number of discretized
planes, the FrFT of the ith plane (1 ≤ i ≤ L) can be
described as

Fr(u)i = Fαi [g(xi)]

= Cαi

+∞∫

−∞
exp[jπ(x2

i cotϕi − 2uxicscϕi + u2cotϕi)]

×g(xi)du, (5)

where αi is the fractional order in the ith plane, which is
associated with the recording distance of the ith object
plane, ϕi = αiπ/2, and g(xi) is the intensity distribu-
tion of the ith plane. Then the whole complex amplitude
distribution in the hologram plane can be described as

Fr(u) =
L∑

i=1

Fr(u)i. (6)

The amplitude hologram can be obtained by

H(u) = |Fr(u) + R(u)|2, (7)

where R(u) denotes the reference wave, and in this let-
ter, R(u) is an in-line plane wave with constant intensity
distribution.

In order to improve the diffraction efficiency, suppress
the zero-order light, and remove the conjugate image, we

generate kinoforms by calculating only the phase distri-
bution of Fr(u), and it can be described as

H(u) = arg[Fr(u)]. (8)

In this letter, the kinoform generated by M-FrFT is
named as M-FrFT kinoform. However, the reconstruc-
tion error of intensity distribution in the image plane is
introduced inevitably, because kinoform ignores the am-
plitude component of wavefront in the hologram plane.
This error distribution is often irregular, and it is shown
as speckle noise generally, which damages the details of
image and decreases the image contrast. A novel method
is proposed to suppress the speckle noise and realize high-
quality 3D holographic display of 3D objects with the use
of FrFT.

In order to suppress the speckle noise in M-FrFT kino-
form reconstruction, we add a pseudorandom phase fac-
tor (PPF) in object planes during the M-FrFT kinoform
calculation, thus Eq. (5) is rewritten as

Fr(u)i,t = Fαi{g(xi)exp[jϕt(xi)]}

= Cαi

+∞∫

−∞
exp[jπ(x2

i cotϕi − 2uxicscϕi + u2cotϕi)]

× g(xi)exp[jϕt(xi)]du, (9)

where ϕt(xi) is the PPF in the tth M-FrFT kinoform
calculation process, and t = 1, 2, 3, · · · , T (T is the
total number of times used in kinoform calculation).
Note that each element of ϕt(xi) is randomly generated
between 0 and 2π, and it is invariant in calculating each
M-FrFT kinoform, but generated randomly again in the
next kinoform calculation.

With this process, the complex amplitude distribution
of a 3D object in hologram plane with the tth M-FrFT
can be described as

Fr(u)t =
L∑

i=1

Fr(u)i,t. (10)

Thus, the tth FrFT kinoform of a 3D object is described
as

H(u)t = arg[Fr(u)t]. (11)

As mentioned above, in the reconstruction of M-FrFT
holograms (both amplitude-type and phase-type), FrFT
process with fractional order α′ = 4k − α is needed to
obtain the reconstructed results. For M-FrFT amplitude
hologram generated by Eq. (7), the reconstructed com-
plex amplitude at the distance zi (that is, reconstructed
with fractional order α′i = 4k − αi) can be described as

O(xi) = Fα′i [H(u)]

= Cα′i

+∞∫

−∞
exp[jπ(x2

i cotϕi − 2uxicscϕi + u2cotϕi)]

×H(u)dxi, (12)

However, for M-FrFT kinoforms generated by Eq. (11),
it should be put back to the argument of the complex
amplitude in hologram plane, so the reconstructed com-
plex amplitude distribution at the distance zi should be
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Fig. 2. Holograms calculation of 3D objects by M-FrFT. (a)
Original 3D image; (b) M-FrFT amplitude hologram; (c) M-
FrFT kinoform.

Fig. 3. Numerically reconstructed images from single M-FrFT
amplitude hologram at different distances. (a) z = 100 mm;
(b) z = 85 mm; (c) z = 70 mm.

Fig. 4. Numerically reconstructed images from single M-FrFT
kinoform at different distances. (a) z = 100 mm; (b) z = 85
mm; (c) z = 70 mm.

Fig. 5. Results of superposing images reconstructed from 100
M-FrFT kinoforms at different distances. (a) z = 100 mm;
(b) z = 85 mm; (c) z = 70 mm.

described as

Ot(xi) = Fα′i{exp[jH(u)t]}

= Cα′i

+∞∫

−∞
exp[jπ(x2

i cotϕi − 2uxicscϕi + u2cotϕi)]

× exp[jH(u)t]dxi, (13)

The complex amplitude distribution reconstructed
from all the kinoforms are then superposed in the ith
reconstructed plane according to

O(xi) =
T∑

t=1

Ot(xi). (14)

In order to verify the feasibility of the proposed
method, we take it to calculate M-FrFT holograms of
three-plane objects and then reconstruct images from
the M-FrFT holograms. As shown in Fig. 2(a), we
suppose that there are three different characters (“A”,
“B”, and “C”) in different distances, and the distance
from plane A, plane B, and plane C to the hologram
plane are zA = 100 mm, zB = 85 mm, and zC = 70
mm, respectively. The number of sampling points in the
object plane and hologram is 512×512. Supposing that
the standard focal length f1 = 100 mm, according to
the relationship shown in Eq. (2), the fraction orders of
planes A, B, and C are αA = 1.0, αB = 0.897, and αC =
0.778, respectively.

Figures 2(b) and (c) are respectively the amplitude
hologram and kinoform of Fig. 2(a) with use of M-FrFT.
The top-right insets in Figs. 2(b) and (c) are the partial
enlarged views of the corresponding holograms. Note
that the fringe patterns of the amplitude hologram and
the kinoform are different. The computing time for each
amplitude hologram or kinoform with pixel number of
512×512 is about 1 s using a personal computer with
a central processing unit (CPU) operating at 3.2 GHz
(Intel Pentiurm IV) and memory of 512 MB. It should
be noted that the computing time will increase almost
linearly with the increasing number of layers.

Figure 3 illustrates the numerically reconstructed im-
ages from single M-FrFT amplitude hologram at different
distances with zero-order light suppressed by the use of
mean-value subtraction in the process of the M-FrFT
amplitude hologram reconstruction. Figure 4 illustrates
the numerical reconstructions from single M-FrFT ki-
noform. Note that the results of Fig. 4 are directly
reconstructed from M-FrFT kinoform without any pre-
and post-filtering operation in reconstruction. The re-
constructed images in Fig. 3 are disturbed seriously by
conjugate images. However, no conjugate image exists in
Fig. 4, which improves the quality of the reconstructed
images.

It is also important to note that, the reconstructed
images in Figs. 3 and 4 are both seriously disturbed by
speckle noise, which decreases the contrast and detail
resolution of reconstructed images. However, as shown
in Fig. 5, the speckle noise is well suppressed after su-
perposing the images reconstructed from 100 M-FrFT ki-
noforms, and the contrast and detail resolution of recon-
structed images are improved significantly. In addition,
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Fig. 6. Variation trends of speckle index according to the
superposed number of reconstructed images from M-FrFT ki-
noforms at different distances.

at the reconstruction distance z = 100 mm, the image of
the character “A” is in sharp focus, but the characters
“B” and “C” are out of focus. The phenomenon is simi-
lar at the reconstruction distances z = 85 or 70 mm. It
means that the reconstructed image is a 3D image.

In order to evaluate the feasibility and effect of speckle
noise reduction with the proposed method in FrFT ki-
noforms reconstruction, speckle index (SI) is introduced,
which is defined as

SI =
1

MN

M∑
m=1

N∑
n=1

σ(m,n)
µ(m, n)

, (15)

where M × N is the total pixel number of the recon-
structed image, σ(m,n) and µ(m,n) are respectively the
standard deviation and mean value of the 3×3 neighbor-
hood of a reconstructed image point P (m, n).

Figure 6 illustrates the variation trends of speckle in-
dex according to the superposed number of reconstructed
images from M-FrFT kinoforms in the reconstruction dis-
tance z = 70, 85, and 100 mm, respectively. The SIs of
the reconstructed images from single kinoform are 0.512,
0.513, 0.514 at distance z = 70, 85, and 100 mm, respec-
tively. However, by superposing all the images recon-
structed from 100 kinoforms at the three distances, the
SIs of the reconstructed images decrease to 0.138, 0.133,
0.126, respectively. We also note that the SI decreases
slower and slower along with the increasing number of
superposed images.

We have also demonstrated that the kinoforms gen-
erated by M-FrFT can be reconstructed in normal
diffractive electro-holographic display systems based on
phase-type spatial light modulator (SLM), but the fac-
tors influencing the image scaling and reconstruction dis-
tance should be researched in the future work. Com-
pared with other digital filtering methods for suppressing
speckle noise of digital images, the advantage of the pro-
posed method is that it is effective to suppress speckle
noise in both numerical and optoelectronic reconstruc-
tions. In order to suppress the speckle noise of opto-
electronic reconstructed image from M-FrFT kinoforms,
phase-type SLM with high refresh rate is needed in the

opto-electronic reconstruction process of kinoforms calcu-
lated by the proposed method. Now this kind of phase-
type SLM with a refresh rate of 60 Hz or faster is available
commercially. The improvement of refresh rate of phase-
type SLM is urgent and helpful to realize high-quality
holographic dynamic 3D display with the use of M-FrFT
kinoform sequence.

In conclusion, a novel method based on M-FrFT is pro-
posed to calculate amplitude hologram and kinoform se-
quence for 3D holographic display. The effects of sup-
pressing speckle noise are analyzed by calculating the
speckle index of numerical reconstructed images. It is
demonstrated that, by calculating M-FrFT kinoform se-
quence of 3D objects and superposing the reconstructed
images from the kinoform sequence, the zero-order light,
conjugate image, and speckle noise can be suppressed,
and the contrast and detail resolution of reconstructed
images are improved. The proposed method will be use-
ful for high-quality optoelectronic 3D display based on
phase-type SLM.
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